受験掲示板・100点BBS【大学受験解答速報掲示板・受験生応援掲示板】
勉強法掲示板(総合)(スレッド一覧)
決起スレ。目標を宣言するスレ - 勉強法掲示板(総合)
【全大学共通】合否・進路調査アンケート

決起スレ。目標を宣言するスレ


0名前を書き忘れた受験生 2014/09/08 14:56  34304view
ちょっとした目標から、大きな目標まで宣言して有言実行!!

勉強法掲示板(総合)(スレッド一覧)
コメントする検索画像一覧
527名前を書き忘れた受験生 2020/08/01 16:46
>>520
すごいね
0pt
526名前を書き忘れた受験生 2020/08/01 14:26
今から3時間全集中
0pt
525名前を書き忘れた受験生 2020/07/31 19:53
今日は地理の問題集終わらせる
0pt
524名前を書き忘れた受験生 2020/07/30 23:05
あと2時間で本日の目標ページまで終わらせてくる。
0pt
523名前を書き忘れた受験生 2020/07/21 23:25
将来大きな一軒家に住む!
そしてその家の設計を自分でする!
0pt
522名前を書き忘れた受験生 2020/07/21 17:11
今から90分集中!
0pt
521名前を書き忘れた受験生 2020/07/13 16:34
今から4時間全集中!
0pt
520名前を書き忘れた受験生 2020/07/02 22:32
京から毎日10時間勉強するぜ!
0pt
519名前を書き忘れた受験生 2020/07/02 11:13
今日から本気出す
0pt
518名前を書き忘れた受験生 2020/06/15 21:24
>>517 速読2文はすごいなぁ。。俺は1文でもつらい。
0pt
517名前を書き忘れた受験生 2020/06/15 21:12
・現役で阪大法学部国共合格
8月の模試で素点75%
・英語毎日速読2文
 ・通学しながらリスニング
 ・風呂入りながら古単、句法
 ・1週間半で数学1教科
 ・朝朝礼始まるまでに理科2科目
 ・毎日1時間世界史復習


この1年は勉強に費やす!!

絶対合格
1pt
516名前を書き忘れた受験生 2020/06/04 21:10
今日から毎日2問東大の過去問を解く
1pt
515名前を書き忘れた受験生 2020/06/04 14:32
今日は読書に逃げてしまった。
0pt
514名前を書き忘れた受験生 2020/06/04 11:00
机のお片付けから始めます
0pt
513名前を書き忘れた受験生 2020/06/04 04:36
早起き
読書
友達作る
1pt
512名前を書き忘れた受験生 2020/06/02 04:24
6月から動いてます
0pt
511名前を書き忘れた受験生 2020/05/06 01:54
読書量あげます。
0pt
510名前を書き忘れた受験生 2020/05/06 01:43
受験勉強極めて志望校合格します!
0pt
509名前を書き忘れた受験生 2020/05/06 01:38
明日から勉強始めます
0pt
508名前を書き忘れた受験生 2020/05/02 16:41
今から2時間頑張る
0pt
507名前を書き忘れた受験生 2020/05/02 08:42
5月から本気出しました
0pt
506名前を書き忘れた受験生 2020/05/01 05:41
今日から早寝早起きします
0pt
505名前を書き忘れた受験生 2020/04/25 14:48
今から1時間超集中モードに入る
0pt
504名前を書き忘れた受験生 2020/03/17 10:53
今日から大学の勉強始めます。
(英語)
0pt
503名前を書き忘れた受験生 2020/03/17 10:30
今から6時間数学の勉強します。
0pt
502名前を書き忘れた受験生 2020/03/14 18:30
…上のようなことを考えつつも、時おり閃くことがある。

男性と比べて時系列にも因果律にもあまり拘らない女性の方が、(意外にも)理科や数学の「直観思考」には向いているんじゃないかなと、ただ乗算や除算のゴチャゴチャした仕上がりを敬遠しているだけなんじゃないか。
こういうのは絵を描かせてみたら、あるいはコンピュータプログラムを書かせてみたら判然とするかもしれぬ。

例えば、高校物理で最も理解し難い波分野について。
一定時間[s]における或る正弦波の振動数f[Hz]と波長λ[m]の積がなぜその波の速さv[m/s]となるのか、そもそも振動数こそが速さじゃないか!…と僕は未だに分からなくなることがあるのだが、こういうのを優しく分かりやすく図案で示してくれる美人女教師が


以上

0pt
501名前を書き忘れた受験生 2020/03/14 18:30
しかし、だ。
実はここに更なる(そしてもっと本質的な)難しさがあるのでは、と察している。

世界あまねく使いまわされている定式つまり数式は、どのようにバラけてもどのように引っ括られても、どこから入ってどこから出ても、どう乗算してもどう除算しても破綻せぬように組み上げられている。
当たり前だろう、と理数系ファンは笑うかもしれぬが、しかしだね、これが文系思考にとってはとてつもなく難しいのだ。
なぜなら、文系思考とは人間マター、つまり時系列の因果律から成り立っているからである。
英語に則ってハードボイルドに指摘すれば、理数世界の表現にては'as'や'if'は有っても'why'/'because'の区別は厳密ではないし、だいいち時制の観念がほとんど無い。
しかし文系の思考世界では、多くの命題表現が一方向の'why/because'因果で成り立っており、時制秩序も厳密である(しかも仮定法というか皮肉法の表現すら備わっている)。。

たとえば。
電気量Q[C] = コンデンサ電気容量C[F] x 電圧V[V] という定式も高校で学習するだろうが、教科書類の説明は以下のとおり;
「複数の電気回路があり、それぞれ電池とコンデンサが接続されている。これら回路の電気容量が同じであるためには、同じ電圧V[V]をかけた時に同じ電気量Qが電池から供給されなければならない。」

本箇所を読んで、文系思考では例えばどのように捉えうるか。
「そうか、これは特殊な事例なのだな、そして、これら回路の電気量量C[F]は常時は同じにはならないのだな」 ─ とさえ読み取ってしまう次第。
この窮屈さがお分かりだろうか。
0pt
500名前を書き忘れた受験生 2020/03/14 18:30
ここまでを、乗算と除算の定式表現としてまとめると;
電気力F[N]→による電荷電気量q[C]への仕事U[J] とすると、
U[J] = 電気電荷量q[C] x 電界の力E[N/C]→ x 移動距離d[m]
また、U[J] / 電荷電気量q[C] = 電位V[V]

これらをササっと了解出来るか?
出来れば、さらに勉強がサクサクと進む。
「仕事」とくれば、その源泉としての「エネルギー」を同じ量や力を以て表現することも可能、例えばこの電荷電気量の電位を位置ポテンシャルと納得するのもたやすい。
もちろん、ここいらを元手にして量概念や電荷の±、コンデンサもオームもキルヒホッフも直観的に分かるし、ジュール熱とのからみもハハーンと頭に入ってくる。
このように「直観の境地」に達するのが高校物理の勉強の楽しさではないかな、そうさせるのが担当教師たちの務めではないかなと僕なりに想像は出来る。
0pt
499名前を書き忘れた受験生 2020/03/14 18:30
さらに続けよう。
え?まだ続くのかって?当たり前だ!甘ったれんな!
今度は、ここで実際に生じている電気力F[N]→がこの電荷q[C]に為す「仕事」についてだ。
或る力の世界における或る実体なのだから、この力がこの実体に働きかけ、何らかの仕事が起こるのは当たり前だ、電気電子の世界であってもだ。

やはり話を単純にするため、ここでの電界の強さE[N/C]→は凸凹無く一様であり、またその方向も電荷と直交して仕事が帳消しになることはないとする。
ここで電気力F[N]→が電荷q[C]に対して為す仕事は、電気力F[N]→ x 電荷q[C]の移動距離d[m] という掛け算で表現出来る…。

まーた掛け算が出てきたぞ、今度はどうしてだろう?と、ちょっとビビるが、いやいや、或る力が或る物体に仕事を為す場合、その距離や位置を以て成果表現するのは力学に倣うと考えればよかろう。
だからここでの掛け算はまあ理解出来よう。

それでは、電気力F→によって「仕事」を為された成果としてのこの電荷q[C]の位置は、どう表現するのだろう?
教科書をつらつらと読めば、それが電位だよとあり、これは仕事U[J]ジュール/電荷電気量q[C]という除算つまりJ/C表現ということになる。
むしろ、ここだよ。
なぜ仕事を電荷電気量で除算するんだろう…?この意義はなんなんだ?とまた文系思考人は考えこんでしまう。
が、ここはもう開き直って ─ ともかく仕事はJ表現であること、そしてここで考察している電荷電気量は変わらないことから、電気力によるどの仕事のタイミングをとってみても、電荷1つあたりに為された仕事は方位を問わずJ/Cとスカラー表現出来るのだ、と納得するしかない。
そして、この仕事U[J]/電荷電気量q[C]を総括的に電位V[V]と別表現も出来るのだと。
0pt
498名前を書き忘れた受験生 2020/03/14 18:29
>>497
高校物理の難しさ
高校生向けの物理について、僕のような文系思考の人間にとって何がどう難しいのかを軽く論じてみたくなった。
僕自身、物理と知的相性がけしてよろしくないことを自覚しており、そんな僕だからこそこの教科の難しさを語るにふさわしかろうと、一応の自覚もある。
じゃあ化学は?数学は?となるが、これらとも知的相性が悪いことは自覚しており、とくに数学は高校時代に超美貌の女性教員や女性実習生に指導されつつもやっぱり高得点を採れず、この悔しさやせつなさといったら
─ そんなことはともかくとして、以下、物理の理解の難しさについて考察してみた。

===================

電気分野にて、ごく基本的なところを再考してみよう。
或る空間に、或る電荷qが在るとする。
え?そんなものが無い場合にはどう考えるのかって?やかましい。
とにかく、在るものとするんだ。
この電荷qは正負±いずれかに相応の電気量を有しているが、話を簡単にするためここでは電気量表現としてq[C]としよう。
電荷の電気量が存在する空間なのだから、もちろんここに電界も存在することになる。
この電界の強さをベクトルE[N/C]→で表すとする。
おや、なぜ強さというのかな、と迷うかもしれないが、力の[N]で表現しているのでまあ強さでよしとしよう。

さて、この空間における電荷q[C]がもたらす(静)電気力は、電荷の電気量と電界の強さの積qE→として表現出来、これを電気力ベクトルF[N]→と表す…
んん??
「電荷の電気量」と「電界の強さ」の「積」とはどういうことか?…量と強さは同じものだと見做しても、これらの掛け算の意義とは?
どうもウヤムヤ感が頭をもたげてくるものの、ここで停まってはいられない、観察上かつ実践上の合理性に則った電気力と電界と電荷電気量の関係なのだ、と強引に納得。
ともかく、q[C] x E[N/C]→ = F[N]→ としてぴったりフィットするものとしよう。
(ついでに言えば、'quantity', 'electricity', 'filed', 'force'といった英単語を物理の教科書に再発見し、これら単語の真意が分かった気になれるから、モアハッピーだ。)
0pt
コメントする検索画像一覧
前へ次へ
関連トピック
掲示板TOPへ戻る